5 Ways To Reuse Your Air Tank (Now That You Don’t Need One)

One of the coolest benefits of rotary screw air compressors is that they don’t need an air receiver tank. Instead, these powerhouse air compressors operate at 100% duty cycle and provide instant air on demand.

But there’s one “problem” that many operators experience after they upgrade their recip to rotary screw: their old air receiver tank is suddenly a stationary, unnecessary hunk of metal.

Fortunately, we’re here to help. In this post, we’ve put together a list of five ways to reuse an air tank now that you don’t need one…
Continue reading “5 Ways To Reuse Your Air Tank (Now That You Don’t Need One)”

The VMAC Diesel Driven Air Compressor’s Helpful Control Box Features & Functions

D60 control box

D60 Control Box

The control box is essentially the brain of the VMAC diesel driven air compressor system. It tells the system what to do and makes decisions based on the programmed settings. The control box is also the communication hub for the air compressor, relaying important information to the operator on an “as needed” basis.
Continue reading “The VMAC Diesel Driven Air Compressor’s Helpful Control Box Features & Functions”

VMAC Direct-Transmission™ Mounted Air Compressor & Multipower System Control Box Features

The control box plays an important role in the Direct-Transmission™ Mounted air compressor and multipower systems (DTM), as it’s used to power the system and communicate with operators and service techs. In addition, the control box monitors the air compressor system on an ongoing basis to ensure its in proper working order.
Continue reading “VMAC Direct-Transmission™ Mounted Air Compressor & Multipower System Control Box Features”

Air Compressor Pressure Relief Valves: Purpose & Testing

What Are Pressure Relief Valves, And How Do They Work?

A compressed air pressure vessel and its operator must be protected from an over-pressure situation—the set pressure of the pressure relief device must not exceed the maximum allowable working pressure (MAWP) marked on the air pressure vessel. A pressure relief valve is used to control and limit the pressure build-up in a system.
Continue reading “Air Compressor Pressure Relief Valves: Purpose & Testing”

Why Is My Compressor Shutting Off? Temperature Sensors and Switches

Temperature Sensors and Switches

Temperature switches and sensors are used on applications which require a solution to a temperature control situation. Often less complicated than most electronic controls, temperature sensors and switches are relatively easy to set up.

Temperature sensors are often used for monitoring compressor coolant, oil and air inlet temperatures as well as discharge air temperatures and logging the variations.

Temperature switches are slightly more complex, and include a sensor plus the ability to send signals. A temperature switch senses temperature levels. When the temperature passes a set point the switch sends a signal to a controller to do something to the application, like cut the power, sound an alarm, turn on a light, or disengage the clutch.

Some immersion temperature switches are appropriate for applications that require an inexpensive solution to simple temperature control. These types of switches activate with a specific rise in temperature and are available with a wide range of temperature pre-set values as well as a set point range, set point tolerance, maximum temperature cut-out setting, and probe length.

On-off controllers

An on-off controller is the simplest form of temperature control device. The output from this type of device is either fully on or off, with no middle state. An on-off controller will cut power or disengage the clutch when the temperature passes the set-point. On-off control is usually used where a precise temperature control is not necessary.

A limit controller is an on-off controller used for alarm indication. This type of controller uses a latching relay, which must be manually reset, and is used to shut down a process when a certain temperature is reached.

VMAC temperature sensors, switches, and controls

VMAC air compressors are equipped with a switch which includes an oil temperature sensor. If the compressor oil gets too hot, the switch sends a signal to the on-off controller to disengage the air compressor’s clutch. This shuts down the system and prevents high temperature related damage.

Why is my compressor shutting off?

If your compressor trips on over temperature, it could be for any of the following reasons:

  • Ambient temperature too high or not enough ventilation
  • Too low oil level
  • Wrong type of oil being used
  • Dirty oil cooler
  • Thermostatic valve not working
  • Dirt / obstruction in oil lines
  • Plugged oil filter
  • Restricted air flow over the air to liquid cooler
  • Too high an engine liquid coolant supply temperature in a liquid to liquid cooler
  • Faulty temperature switch

Excessive oil temperatures can cause damage to your air compressor including premature lubricant degradation, high oil and moisture carryover, and varnishing of the compressor internals and system components (such as the oil filter, cooler, and separator filter). Lubricant flash points also present a fire hazard.

The costs related to rectifying these issues through the use of temperature switches and controls can result in significant cost-savings, as risks of down-time and injury are minimized.

Interested in learning more about air compressor components and accessories? Browse our collection of air compressor accessory blogs here.

 

VMAC Air Innovated banner

Auxiliary port driven air compressor system considerations

Today many industrial engines come equipped, or can be ordered with, an auxiliary port (pump drive) that is used to power accessory equipment.  Quite often you will find a hydraulic pump or a standard piston type air compressor mounted there; what isn’t seen much is a rotary screw compressor mounted there.  We’ve had many inquiries asking if there is a compressor available that would meet the heavier duty cycle and air flow requirements for specific jobs.  These range from spray foam, pump priming, air gouging, to air tools and dust collection.  While VMAC does have direct drive, port mounted rotary screw compressors, there are several factors to consider before choosing to mount a rotary screw compressor to that auxiliary port. Continue reading “Auxiliary port driven air compressor system considerations”

The Purpose and Functions of Compressed Air Storage Tank

We’re often asked if a particular air compressor installation requires the use of an air receiver tank. Most applications will benefit from the use of air storage whether it’s a vertical or horizontal air tank. The choice of what style of tank is generally made by the installation location and the amount and type of space available. Vertical receiver tanks are readily available in sizes from 10 – 2560 Gallons, and horizontal receivers are available from 5 – 2560 Gallon capacities.
Continue reading “The Purpose and Functions of Compressed Air Storage Tank”

Components of your VMAC mobile rotary screw air compressor system

You’ve decided that a rotary screw compressor system is the right choice for your application; maybe you are converting from using reciprocating compressors. When installing your new compressor you’ll need to locate a few different components and plumb hosing between them. In this article, we’ll briefly explain the functions of the components of a rotary screw compressor system. Continue reading “Components of your VMAC mobile rotary screw air compressor system”

What are Dual Tower Regenerative Desiccant Air Dryers (and how do they work?)

Heaterless Type (Pressure Swing Dryers)

Dual tower desiccant air dryers are used to produce dewpoint temperatures below the freezing point of water, as well as reduce the moisture content of compressed air used in critical process applications. Typical dewpoints produced by these types of dryers are -40° F to -100° F, although lower dewpoints are possible. Continue reading “What are Dual Tower Regenerative Desiccant Air Dryers (and how do they work?)”

Why the fuel valve is important on small gas engines

Protect your engine, turn off your fuel

You just finished a job using your gas drive air compressor and you’re getting ready to drive to your next job. Did you remember to shut off your fuel valve?  In this article we’ll explain why you should.

Most small gas engines have a fuel valve that should be shut off by when the engine is not in use.  This can be easy to forget, especially when using remote controls.

Fuel shut-off becomes important when moving equipment as vibration can cause the carburetor needle valve to move allowing fuel to trickle into the carburetor, the float chamber and down the intake valve.  This can cause:

  1. Engine flood, causing downtime waiting for the flood to clear.
  2. Dilution, when fuel goes past piston rings and mixes with oil, causing engine damage.
  3. Hydraulic lock, when incompressible liquid causes engine damage or failure.
Best practice for small gas engines – ensure equipment is on level ground, and the fuel valve is shut off when re-fueling and when equipment is not in use.

Why does the engine flood?

Any time vibration causes the carburetor float to drop in the float chamber, pressure is reduced against the needle valve.  Reduced pressure against the needle valve allows pressurized fuel from the fuel tank to pass through the valve.

If this happens frequently, fuel will overfill the float chamber, flood down the throat of the carburetor, and flow into the cylinder through the open intake valve.

Fuel in the cylinder can flood the combustion chamber above the piston, creating hydraulic lock, preventing the engine from turning. This fuel will also slowly drain past the piston rings, diluting the oil in the crank case. If the engine manages to start with diluted oil, severe and premature engine damage will follow.

How does the float work?

The float chamber is located below the carburetor body. Through the operation of the float and the needle valve, the float chamber maintains a constant fuel level while the engine is working. The fuel flows from the tank into the float chamber through the needle valve. When the fuel rises to a specific level, the float rises. When the buoyancy of the float is balanced with the fuel pressure, the needle valve shuts off the fuel passage, thereby maintaining the fuel at the predetermined level.

Any other reasons?

Not only does shutting off the fuel valve prevent the engine from flooding while being transported, it prevents flooding because of contamination in the float valve, and extends the life of the float valve by decreasing pressure on it.

G30 gas air compressor banner

Is this unique to Honda engines?

Most manufacturers of small gas engines have this same issue.  Like the Honda engines used in VMAC G30 Gas Drive Air Compressors, Subaru and Kohler engines used in other air compressor brands state in their literature that fuel valves should be shut off when not in use, including during transport.

VMAC G30 Gas Drive Air Compressors are powered by Honda’s GX390 air cooled 4-stroke engine.  The G30 is a Honda-approved application.  The engine includes electric start capability, is EPA and CARB-compliant, and comes with Honda’s 3-year warranty.

Do you have questions about VMAC’s G30 Gas Drive Air Compressor?  Please give us a call at 1 888 514 6656 or email us at [email protected].

If you have any questions about this article or anything mobile compressor related, please contact us.

Factors to consider when purchasing a compressor for your mobile application

It’s time to buy a compressor for your mobile service truck application.  You’ve figured out what type of compressor and how much air flow and pressure you need as well as how it will affect the load capacity of your truck.  Now it’s simply where you can buy that compressor the at the lowest cost, right?  Well not really.  Besides the installation time, there are some important installation details to consider, depending on the type of compressor you’ve chosen and what type of work you’ll be doing. Continue reading “Factors to consider when purchasing a compressor for your mobile application”

Checking VMAC Belt Drive Systems

Checking for belt misalignment and belt drive design requirements.

VMAC compressor systems use serpentine belts, also known as a micro-v, poly-v or multi-rib belts, which are continuous rubber belts with k-type cross section typically with 6 ribs but can vary between 4 and 8 ribs. Belt drive systems are designed to take into account many different requirements to allow continuous smooth running with minimal maintenance. Some of these requirements are: Continue reading “Checking VMAC Belt Drive Systems”

Why does hose size affect my compressor airflow?

It is important to consider appropriate sizing of all components of your air system.  If you are investing in an air compressor system, restricting the flow anywhere in your system could make it significantly underperform or cost you a lot more in energy costs to run that compressor over its lifetime.

As air travels from the compressor head to your tool it travels through components such as hoses, fittings, valves, and tanks. Each of these will restrict the flow of air in some way depending on the geometry of each component and the magnitude of the flow passing through it. For example, a long small hose feeding a high air demand tool can result in a high-pressure drop.  The result of this will mean either your compressor is working harder and using more power to keep up with your air demands, or if it can’t keep up, your tool performance will be reduced.  In some cases, where torque or power at the tool is important, you may not be able to complete your work.

Continue reading “Why does hose size affect my compressor airflow?”

The Importance of Air Receivers / Auxiliary Air Tanks

Compressed air applications can often benefit from the installation of an air receiver tank.  The receiver tank serves many important functions:

A300047-A 10 gallon air receiver tank

A 10-gallon air receiver tank

  • It damps pulsations from the discharge line of a reciprocating compressor, resulting in an essentially steady flow of air in the system.
  • It serves as an air reservoir to take care of sudden or unusually heavy demands for air in excess of the compressor’s designed capacity.
  • It prevents the excessive cycling of a compressor.
  • It knocks out solid dirt and particulate matter that may have passed through the compressor inlet filter or may be formed by compressor wear.
  • It precipitates out contaminants and oil carry-over from the compressor oil that might get into the compressor discharge
  • It helps cool the compressed air and precipitates out moisture that inevitably results from air compression

Continue reading “The Importance of Air Receivers / Auxiliary Air Tanks”